|
In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as ''q''-analogues of products of Schur functions. J. Haglund, M. Haiman, N. Loehr (2005) showed how to expand Macdonald polynomials in terms of LLT polynomials. Ian Grojnowski and Mark Haiman (preprint) proved a positivity conjecture for LLT polynomials that combined with the previous result implies the Macdonald positivity conjecture for Macdonald polynomials, and extended the definition of LLT polynomials to arbitrary finite root systems. ==References== *I. Grojnowski, M. Haiman, ''Affine algebras and positivity'' (preprint available (here )) *J. Haglund, M. Haiman, N. Loehr (A Combinatorial Formula for Macdonald Polynomials ) J. Amer. Math. Soc. 18 (2005), no. 3, 735–761 *Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (Ribbon Tableaux, Hall-Littlewood Functions, Quantum Affine Algebras and Unipotent Varieties ) J. Math. Phys. 38 (1997), no. 2, 1041-1068. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「LLT polynomial」の詳細全文を読む スポンサード リンク
|